interactive-track-and-trace/advection/README.md

40 lines
1.8 KiB
Markdown

## Location of data
The data path is hardcoded such that the following tree structure is assumed:
```
data/
grid.h5
hydrodynamic_U.h5
hydrodynamic_V.h5
interactive-track-and-trace/
opening-hdf5/
...
```
## Compiling
Let the current directory be the `src` directory. Run:
```shell
mkdir build
cd build
cmake ..
make
```
### Building with Linux
Makes use of `mdspan` which is not supported by glibc++ at time of writing. See [compiler support](https://en.cppreference.com/w/cpp/compiler_support/23) for `mdspan`. The solution to this is to use Clang and libc++; this is configured in our CMake setup, however the default installation of the `netcdf-cxx` package on at least Arch linux (and suspectedly Debian derivatives as well) specifically builds for the glibc implementation. To get the netcdf C++ bindings functional with the libc++ implementation, one needs to build from source. On Linux, this requires a few changes to the CMake file included with the netcdf-cxx source code, which are detailed below.
Step-by-step to build the program using clang++ and libc++ on linux:
1. Download the source code of netcdf-cxx, found at 'https://github.com/Unidata/netcdf-cxx4/releases/tag/v4.3.1' (make sure to download the release source code, as the master branch contains non-compilable code).
2. Edit the CMakeLists.txt file, by appending '-stdlib=libc++' to the `CMAKE_CXX_FLAGS` variable in line 430. This means line 430 should read:
```cmake
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -Wall -Wno-unused-variable -Wno-unused-parameter -stdlib=libc++")
```
2. Build the source code with the following:
```sh
mkdir build && cd build
cmake .. -DCMAKE_CXX_COMPILER=/usr/bin/clang++
make
ctest
sudo make install
```
3. Now the code should compile through the standard steps described in the Compiling section.