kind of working but where did the euler layer go?

This commit is contained in:
robin 2024-05-08 13:01:36 +02:00
parent 5a2e9a8a7a
commit 945eebf76f
7 changed files with 151 additions and 43 deletions

View File

@ -8,6 +8,7 @@ set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
find_package(VTK COMPONENTS
GeovisCore
CommonColor
CommonColor
CommonCore

View File

@ -2,6 +2,9 @@
#include <vtkMatrix4x4.h>
#include <vtkTransform.h>
#include <vtkTransformFilter.h>
#include <vtkGeoProjection.h>
#include <vtkGeoTransform.h>
#include <vtkGeneralTransform.h>
vtkSmartPointer<vtkCamera> createNormalisedCamera() {
vtkSmartPointer<vtkCamera> camera = vtkSmartPointer<vtkCamera>::New();
@ -15,32 +18,93 @@ vtkSmartPointer<vtkCamera> createNormalisedCamera() {
return camera;
}
vtkSmartPointer<vtkMatrix4x4> getCartographicTransformMatrix(const std::shared_ptr<UVGrid> uvGrid) {
const double XMin = uvGrid->lons.front();
const double XMax = uvGrid->lons.back();
const double YMin = uvGrid->lats.front();
const double YMax = uvGrid->lats.back();
double eyeTransform[] = {
2/(XMax-XMin), 0, 0, -(XMax+XMin)/(XMax-XMin),
0, 2/(YMax-YMin), 0, -(YMax+YMin)/(YMax-YMin),
0, 0, 1, 0,
0, 0, 0, 1
};
auto matrix = vtkSmartPointer<vtkMatrix4x4>::New();
matrix->DeepCopy(eyeTransform);
return matrix;
}
//vtkSmartPointer<vtkMatrix4x4> getCartographicTransformMatrix(const std::shared_ptr<UVGrid> uvGrid) {
// const double XMin = uvGrid->lons.front();
// const double XMax = uvGrid->lons.back();
// const double YMin = uvGrid->lats.front();
// const double YMax = uvGrid->lats.back();
//
// double eyeTransform[] = {
// 2/(XMax-XMin), 0, 0, -(XMax+XMin)/(XMax-XMin),
// 0, 2/(YMax-YMin), 0, -(YMax+YMin)/(YMax-YMin),
// 0, 0, 1, 0,
// 0, 0, 0, 1
// };
//
// auto matrix = vtkSmartPointer<vtkMatrix4x4>::New();
// matrix->DeepCopy(eyeTransform);
// return matrix;
//}
// Assumes Normalised camera is used
vtkSmartPointer<vtkTransformFilter> createCartographicTransformFilter(const std::shared_ptr<UVGrid> uvGrid) {
vtkNew<vtkTransform> transform;
auto proj = vtkSmartPointer<vtkGeoProjection>::New();
proj->SetName("merc");
transform->SetMatrix(getCartographicTransformMatrix(uvGrid));
auto geoTransform = vtkSmartPointer<vtkGeoTransform>::New();
geoTransform->SetDestinationProjection(proj);
const double XMin = -15.875;
const double XMax = 12.875;
const double YMin = 46.125;
const double YMax = 62.625;
double bottomLeft[3] = {XMin, YMin, 0};
double topRight[3] = {XMax, YMax, 0};
geoTransform->TransformPoint(bottomLeft, bottomLeft);
geoTransform->TransformPoint(topRight, topRight);
double width = topRight[0] - bottomLeft[0];
double height = topRight[1] - bottomLeft[1];
auto scaleIntoNormalisedSpace = vtkSmartPointer<vtkTransform>::New();
scaleIntoNormalisedSpace->Scale(2/(width), 2/(height), 1);
scaleIntoNormalisedSpace->Translate(-(bottomLeft[0]+topRight[0])/2, -(bottomLeft[1] + topRight[1])/2, 0);
auto totalProjection = vtkSmartPointer<vtkGeneralTransform>::New();
totalProjection->Identity();
totalProjection->Concatenate(scaleIntoNormalisedSpace);
totalProjection->Concatenate(geoTransform);
vtkSmartPointer<vtkTransformFilter> transformFilter = vtkSmartPointer<vtkTransformFilter>::New();
transformFilter->SetTransform(transform);
transformFilter->SetTransform(totalProjection);
return transformFilter;
}
vtkSmartPointer<vtkTransformFilter> createInverseCartographicTransformFilter(const std::shared_ptr<UVGrid> uvGrid) {
auto proj = vtkSmartPointer<vtkGeoProjection>::New();
proj->SetName("merc");
auto geoTransform = vtkSmartPointer<vtkGeoTransform>::New();
geoTransform->SetDestinationProjection(proj);
const double XMin = -15.875;
const double XMax = 12.875;
const double YMin = 46.125;
const double YMax = 62.625;
double bottomLeft[3] = {XMin, YMin, 0};
double topRight[3] = {XMax, YMax, 0};
geoTransform->TransformPoint(bottomLeft, bottomLeft);
geoTransform->TransformPoint(topRight, topRight);
geoTransform->Inverse();
double width = topRight[0] - bottomLeft[0];
double height = topRight[1] - bottomLeft[1];
auto scaleIntoNormalisedSpace = vtkSmartPointer<vtkTransform>::New();
scaleIntoNormalisedSpace->Scale(2/(width), 2/(height), 1);
scaleIntoNormalisedSpace->Translate(-(bottomLeft[0]+topRight[0])/2, -(bottomLeft[1] + topRight[1])/2, 0);
scaleIntoNormalisedSpace->Inverse();
auto totalProjection = vtkSmartPointer<vtkGeneralTransform>::New();
totalProjection->Identity();
totalProjection->Concatenate(geoTransform);
totalProjection->Concatenate(scaleIntoNormalisedSpace);
vtkSmartPointer<vtkTransformFilter> transformFilter = vtkSmartPointer<vtkTransformFilter>::New();
transformFilter->SetTransform(totalProjection);
return transformFilter;
}

View File

@ -28,4 +28,6 @@ vtkSmartPointer<vtkMatrix4x4> getCartographicTransformMatrix(const std::shared_p
* @return pointer to transform filter
*/
vtkSmartPointer<vtkTransformFilter> createCartographicTransformFilter(const std::shared_ptr<UVGrid> uvGrid);
vtkSmartPointer<vtkTransformFilter> createInverseCartographicTransformFilter(const std::shared_ptr<UVGrid> uvGrid);
#endif //NORMALISEDCARTOGRAPHICCAMERA_H

View File

@ -38,8 +38,8 @@ void SpawnPointCallback::Execute(vtkObject *caller, unsigned long evId, void *ca
ren->SetDisplayPoint(displayPos);
ren->DisplayToWorld();
ren->GetWorldPoint(worldPos);
inverseCartographicProjection->MultiplyPoint(worldPos, worldPos);
// cout << "clicked on lon = " << worldPos[0] << " and lat = " << worldPos[1] << endl;
cout << "clicked on " << worldPos[1] << ", " << worldPos[0] << endl;
inverseCartographicProjection->TransformPoint(worldPos, worldPos);
vtkIdType id = points->InsertNextPoint(worldPos[0], worldPos[1], 0);
data->SetPoints(points);
@ -77,6 +77,5 @@ void SpawnPointCallback::setRen(const vtkSmartPointer<vtkRenderer> &ren) {
void SpawnPointCallback::setUVGrid(const std::shared_ptr<UVGrid> &uvGrid) {
this->uvGrid = uvGrid;
inverseCartographicProjection = getCartographicTransformMatrix(uvGrid);
inverseCartographicProjection->Invert();
inverseCartographicProjection = createInverseCartographicTransformFilter(uvGrid)->GetTransform();
}

View File

@ -1,13 +1,13 @@
#ifndef SPAWNPOINTCALLBACK_H
#define SPAWNPOINTCALLBACK_H
#include <memory>
#include <vtkCallbackCommand.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkPoints.h>
#include <vtkPolyData.h>
#include <vtkMatrix4x4.h>
#include <vtkAbstractTransform.h>
#include "../advection/UVGrid.h"
class SpawnPointCallback : public vtkCallbackCommand {
@ -30,7 +30,7 @@ private:
vtkSmartPointer<vtkPoints> points;
vtkSmartPointer<vtkRenderer> ren;
std::shared_ptr<UVGrid> uvGrid;
vtkSmartPointer<vtkMatrix4x4> inverseCartographicProjection;
vtkSmartPointer<vtkAbstractTransform> inverseCartographicProjection;
void Execute(vtkObject *caller, unsigned long evId, void *callData) override;

View File

@ -68,17 +68,11 @@ LGlyphLayer::LGlyphLayer(std::shared_ptr<UVGrid> uvGrid, std::unique_ptr<Advecti
// creates a few points so we can test the updateData function
void LGlyphLayer::spoofPoints() {
this->points->InsertNextPoint(-4.125, 61.375 , 0);
// this->points->InsertNextPoint(6.532949683882039, 53.24308582564463, 0); // Coordinates of Zernike
// this->points->InsertNextPoint(5.315307819255385, 60.40001057122271, 0); // Coordinates of Bergen
// this->points->InsertNextPoint( 6.646210231365825, 46.52346296009023, 0); // Coordinates of Lausanne
// this->points->InsertNextPoint(-6.553894313570932, 62.39522131195857, 0); // Coordinates of the top of the Faroe islands
for (int i=0; i < 330; i+=5) {
for (int j=0; j < 330; j+=5) {
this->points->InsertNextPoint(-15.875+(12.875+15.875)/330*j, 46.125+(62.625-46.125)/330*i, 0);
}
}
this->points->InsertNextPoint(6.532949683882039, 53.24308582564463, 0); // Coordinates of Zernike
this->points->InsertNextPoint(5.315307819255385, 60.40001057122271, 0); // Coordinates of Bergen
this->points->InsertNextPoint(6.646210231365825, 46.52346296009023, 0); // Coordinates of Lausanne
this->points->InsertNextPoint(-6.553894313570932, 62.39522131195857,
0); // Coordinates of the top of the Faroe islands
this->points->Modified();
}
@ -89,7 +83,7 @@ void LGlyphLayer::updateData(int t) {
for (vtkIdType n = 0; n < this->points->GetNumberOfPoints(); n++) {
this->points->GetPoint(n, point);
for (int i = 0; i < SUPERSAMPLINGRATE; i++) {
std::tie(point[1], point[0]) = advector->advect(t, point[1], point[0], (t-lastT)/SUPERSAMPLINGRATE);
std::tie(point[1], point[0]) = advector->advect(t, point[1], point[0], (t - lastT) / SUPERSAMPLINGRATE);
}
this->points->SetPoint(n, point[0], point[1], 0);
}

View File

@ -17,6 +17,12 @@
#include "advection/kernel/RK4AdvectionKernel.h"
#include "advection/kernel/SnapBoundaryConditionKernel.h"
#include <vtkTransform.h>
#include <vtkTransformFilter.h>
#include <vtkGeoProjection.h>
#include <vtkGeoTransform.h>
#include <vtkGeneralTransform.h>
using namespace std;
#define DT 60 * 60 // 60 sec/min * 60 mins
@ -29,6 +35,7 @@ int main() {
cout << "Starting vtk..." << endl;
auto l = new LGlyphLayer(uvGrid, std::move(kernelRK4BoundaryChecked));
l->spoofPoints();
unique_ptr<Program> program = make_unique<Program>(DT);
program->addLayer(new BackgroundImage("../../../../data/map_661-661.png"));
@ -37,6 +44,47 @@ int main() {
program->render();
// auto proj = vtkSmartPointer<vtkGeoProjection>::New(); proj->SetName("merc"); auto geoTransform = vtkSmartPointer<vtkGeoTransform>::New(); geoTransform->SetDestinationProjection(proj);
// const double XMin = -15.875;
// const double XMax = 12.875;
// const double YMin = 46.125;
// const double YMax = 62.625;
//
// double bottomLeft[3] = {XMin, YMin, 0};
// double topRight[3] = {XMax, YMax, 0};
// geoTransform->TransformPoint(bottomLeft, bottomLeft);
// geoTransform->TransformPoint(topRight, topRight);
//
// double width = topRight[0] - bottomLeft[0];
// double height = topRight[1] - bottomLeft[1];
//
// auto scaleIntoNormalisedSpace = vtkSmartPointer<vtkTransform>::New();
// scaleIntoNormalisedSpace->Scale(2/(width), 2/(height), 1);
// scaleIntoNormalisedSpace->Translate(-(bottomLeft[0]+topRight[0])/2, -(bottomLeft[1] + topRight[1])/2, 0);
//
// auto totalProjection = vtkSmartPointer<vtkGeneralTransform>::New();
// totalProjection->PostMultiply();
// totalProjection->Identity();
// totalProjection->Concatenate(geoTransform);
// totalProjection->Concatenate(scaleIntoNormalisedSpace);
//
// double in[3] = {4.846871030623073, 52.364810061968335, 0};
// geoTransform->TransformPoint(in, in);
// cout << "in[3] = {" << in[0] << "," << in[1] << "," << in[2] << "}" << endl;
// scaleIntoNormalisedSpace->TransformPoint(in, in);
// cout << "in[3] = {" << in[0] << "," << in[1] << "," << in[2] << "}" << endl;
// scaleIntoNormalisedSpace->Inverse();
// scaleIntoNormalisedSpace->TransformPoint(in, in);
// cout << "in[3] = {" << in[0] << "," << in[1] << "," << in[2] << "}" << endl;
// geoTransform->Inverse();
// geoTransform->TransformPoint(in, in);
// cout << "in[3] = {" << in[0] << "," << in[1] << "," << in[2] << "}" << endl;
//// totalProjection->TransformPoint(in, in);
//// cout << "in[3] = {" << in[0] << "," << in[1] << "," << in[2] << "}" << endl;
//// totalProjection->Inverse();
//// totalProjection->TransformPoint(in, in);
//// cout << "in[3] = {" << in[0] << "," << in[1] << "," << in[2] << "}" << endl;
return EXIT_SUCCESS;
}