Moved illumination into own files
This commit is contained in:
parent
479c450fef
commit
e983b3e3a8
|
|
@ -7,9 +7,8 @@
|
|||
#include "shading.h"
|
||||
|
||||
|
||||
|
||||
// Raycast + phong, TODO: Consider wrapping in a class
|
||||
__global__ void raycastKernel(float* volumeData, unsigned char* framebuffer, int d_volumeWidth, int d_volumeHeight, int d_volumeDepth) {
|
||||
__global__ void raycastKernel(float* volumeData, unsigned char* framebuffer) {
|
||||
int px = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int py = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
if (px >= IMAGE_WIDTH || py >= IMAGE_HEIGHT) return;
|
||||
|
|
@ -30,9 +29,9 @@ __global__ void raycastKernel(float* volumeData, unsigned char* framebuffer, int
|
|||
v *= tanHalfFov;
|
||||
|
||||
// Find ray direction
|
||||
Vec3 cameraRight = (cameraDir.cross(cameraUp)).normalize();
|
||||
cameraUp = (cameraRight.cross(cameraDir)).normalize();
|
||||
Vec3 rayDir = (cameraDir + cameraRight*u + cameraUp*v).normalize();
|
||||
Vec3 cameraRight = (d_cameraDir.cross(d_cameraUp)).normalize();
|
||||
d_cameraUp = (cameraRight.cross(d_cameraDir)).normalize();
|
||||
Vec3 rayDir = (d_cameraDir + cameraRight*u + d_cameraUp*v).normalize();
|
||||
|
||||
// Intersect (for simplicity just a 3D box from 0 to 1 in all dimensions) - TODO: Think about whether this is the best way to do this
|
||||
float tNear = 0.0f;
|
||||
|
|
@ -56,9 +55,9 @@ __global__ void raycastKernel(float* volumeData, unsigned char* framebuffer, int
|
|||
}
|
||||
};
|
||||
|
||||
intersectAxis(cameraPos.x, rayDir.x);
|
||||
intersectAxis(cameraPos.y, rayDir.y);
|
||||
intersectAxis(cameraPos.z, rayDir.z);
|
||||
intersectAxis(d_cameraPos.x, rayDir.x);
|
||||
intersectAxis(d_cameraPos.y, rayDir.y);
|
||||
intersectAxis(d_cameraPos.z, rayDir.z);
|
||||
|
||||
if (tNear > tFar) continue; // No intersectionn
|
||||
if (tNear < 0.0f) tNear = 0.0f;
|
||||
|
|
@ -68,30 +67,30 @@ __global__ void raycastKernel(float* volumeData, unsigned char* framebuffer, int
|
|||
|
||||
float tCurrent = tNear;
|
||||
while (tCurrent < tFar && alphaAccum < alphaAcumLimit) {
|
||||
Point3 pos = cameraPos + rayDir * tCurrent;
|
||||
Point3 pos = d_cameraPos + rayDir * tCurrent;
|
||||
|
||||
// Convert to volume indices
|
||||
float fx = pos.x * (d_volumeWidth - 1);
|
||||
float fy = pos.y * (d_volumeHeight - 1);
|
||||
float fz = pos.z * (d_volumeDepth - 1);
|
||||
float fx = pos.x * (VOLUME_WIDTH - 1);
|
||||
float fy = pos.y * (VOLUME_HEIGHT - 1);
|
||||
float fz = pos.z * (VOLUME_DEPTH - 1);
|
||||
int ix = (int)roundf(fx);
|
||||
int iy = (int)roundf(fy);
|
||||
int iz = (int)roundf(fz);
|
||||
|
||||
// Sample
|
||||
float density = sampleVolumeNearest(volumeData, d_volumeWidth, d_volumeHeight, d_volumeDepth, ix, iy, iz);
|
||||
float density = sampleVolumeNearest(volumeData, VOLUME_WIDTH, VOLUME_HEIGHT, VOLUME_DEPTH, ix, iy, iz);
|
||||
|
||||
// Basic transfer function. TODO: Move to a separate file, and then improve
|
||||
float alphaSample = density * 0.1f;
|
||||
// float alphaSample = 1.0f - expf(-density * 0.1f);
|
||||
Color3 baseColor = Color3(density, 0.1f*density, 1.f - density); // TODO: Implement a proper transfer function
|
||||
Color3 baseColor = Color3::init(density, 0.1f*density, 1.f - density); // TODO: Implement a proper transfer function
|
||||
|
||||
// If density ~ 0, skip shading
|
||||
if (density > minAllowedDensity) {
|
||||
Vec3 grad = computeGradient(volumeData, d_volumeWidth, d_volumeHeight, d_volumeDepth, ix, iy, iz);
|
||||
Vec3 grad = computeGradient(volumeData, VOLUME_WIDTH, VOLUME_HEIGHT, VOLUME_DEPTH, ix, iy, iz);
|
||||
Vec3 normal = -grad.normalize();
|
||||
|
||||
Vec3 lightDir = (lightPos - pos).normalize();
|
||||
Vec3 lightDir = (d_lightPos - pos).normalize();
|
||||
Vec3 viewDir = -rayDir.normalize();
|
||||
|
||||
// Apply Phong
|
||||
|
|
|
|||
154
src/main.cu
154
src/main.cu
|
|
@ -10,142 +10,11 @@
|
|||
#include "objs/sphere.h"
|
||||
#include "img/handler.h"
|
||||
#include "consts.h"
|
||||
#include "illumination/illumination.h"
|
||||
|
||||
|
||||
__constant__ int d_volumeWidth;
|
||||
__constant__ int d_volumeHeight;
|
||||
__constant__ int d_volumeDepth;
|
||||
|
||||
static float* d_volume = nullptr;
|
||||
|
||||
// ----------------------------------------------------------------------------------------------------
|
||||
__device__ Vec3 phongShading(const Vec3& normal, const Vec3& lightDir, const Vec3& viewDir, const Vec3& baseColor) {
|
||||
Vec3 ambient = baseColor * ambientStrength;
|
||||
double diff = fmax(normal.dot(lightDir), 0.0);
|
||||
Vec3 diffuse = baseColor * (diffuseStrength * diff);
|
||||
|
||||
Vec3 reflectDir = (normal * (2.0 * normal.dot(lightDir)) - lightDir).normalize();
|
||||
double spec = pow(fmax(viewDir.dot(reflectDir), 0.0), shininess);
|
||||
Vec3 specular = Vec3(1.0, 1.0, 1.0) * (specularStrength * spec);
|
||||
|
||||
return ambient + diffuse + specular;
|
||||
}
|
||||
|
||||
// Raycast + phong
|
||||
__global__ void raycastKernel(float* volumeData, unsigned char* framebuffer, int imageWidth, int imageHeight, Vec3 cameraPos, Vec3 cameraDir, Vec3 cameraUp, float fov, float stepSize, Vec3 lightPos) {
|
||||
int px = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int py = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
if (px >= imageWidth || py >= imageHeight) return;
|
||||
|
||||
float accumR = 0.0f;
|
||||
float accumG = 0.0f;
|
||||
float accumB = 0.0f;
|
||||
|
||||
// Multiple samples per pixel
|
||||
for (int s = 0; s < SAMPLES_PER_PIXEL; s++) {
|
||||
// Map to [-1, 1]
|
||||
float u = ((px + 0.5f) / imageWidth ) * 2.0f - 1.0f;
|
||||
float v = ((py + 0.5f) / imageHeight) * 2.0f - 1.0f;
|
||||
|
||||
// TODO: Move this (and all similar transformation code) to its own separate file
|
||||
float tanHalfFov = tanf(fov * 0.5f);
|
||||
u *= tanHalfFov;
|
||||
v *= tanHalfFov;
|
||||
|
||||
// Find ray direction
|
||||
Vec3 cameraRight = (cameraDir.cross(cameraUp)).normalize();
|
||||
cameraUp = (cameraRight.cross(cameraDir)).normalize();
|
||||
Vec3 rayDir = (cameraDir + cameraRight*u + cameraUp*v).normalize();
|
||||
|
||||
// Intersect (for simplicity just a 3D box from 0 to 1 in all dimensions) - TODO: Think about whether this is the best way to do this
|
||||
float tNear = 0.0f;
|
||||
float tFar = 1e6f;
|
||||
auto intersectAxis = [&](float start, float dirVal) {
|
||||
if (fabsf(dirVal) < epsilon) {
|
||||
if (start < 0.f || start > 1.f) {
|
||||
tNear = 1e9f;
|
||||
tFar = -1e9f;
|
||||
}
|
||||
} else {
|
||||
float t0 = (0.0f - start) / dirVal;
|
||||
float t1 = (1.0f - start) / dirVal;
|
||||
if (t0>t1) {
|
||||
float tmp=t0;
|
||||
t0=t1;
|
||||
t1=tmp;
|
||||
}
|
||||
if (t0>tNear) tNear = t0;
|
||||
if (t1<tFar ) tFar = t1;
|
||||
}
|
||||
};
|
||||
|
||||
intersectAxis(cameraPos.x, rayDir.x);
|
||||
intersectAxis(cameraPos.y, rayDir.y);
|
||||
intersectAxis(cameraPos.z, rayDir.z);
|
||||
|
||||
if (tNear > tFar) continue; // No intersectionn
|
||||
if (tNear < 0.0f) tNear = 0.0f;
|
||||
|
||||
float colorR = 0.0f, colorG = 0.0f, colorB = 0.0f;
|
||||
float alphaAccum = 0.0f;
|
||||
|
||||
float tCurrent = tNear;
|
||||
while (tCurrent < tFar && alphaAccum < alphaAcumLimit) {
|
||||
Vec3 pos = cameraPos + rayDir * tCurrent;
|
||||
|
||||
// Convert to volume indices
|
||||
float fx = pos.x * (d_volumeWidth - 1);
|
||||
float fy = pos.y * (d_volumeHeight - 1);
|
||||
float fz = pos.z * (d_volumeDepth - 1);
|
||||
int ix = (int)roundf(fx);
|
||||
int iy = (int)roundf(fy);
|
||||
int iz = (int)roundf(fz);
|
||||
|
||||
// Sample
|
||||
float density = sampleVolumeNearest(volumeData, d_volumeWidth, d_volumeHeight, d_volumeDepth, ix, iy, iz);
|
||||
|
||||
// Basic transfer function. TODO: Move to a separate file, and then improve
|
||||
float alphaSample = density * 0.1f;
|
||||
// float alphaSample = 1.0f - expf(-density * 0.1f);
|
||||
Vec3 baseColor = Vec3(density, 0.1f*density, 1.f - density); // TODO: Implement a proper transfer function
|
||||
|
||||
// If density ~ 0, skip shading
|
||||
if (density > minAllowedDensity) {
|
||||
Vec3 grad = computeGradient(volumeData, d_volumeWidth, d_volumeHeight, d_volumeDepth, ix, iy, iz);
|
||||
Vec3 normal = -grad.normalize();
|
||||
|
||||
Vec3 lightDir = (lightPos - pos).normalize();
|
||||
Vec3 viewDir = -rayDir.normalize();
|
||||
|
||||
// Apply Phong
|
||||
Vec3 shadedColor = phongShading(normal, lightDir, viewDir, baseColor);
|
||||
|
||||
// Compose
|
||||
colorR += (1.0f - alphaAccum) * shadedColor.x * alphaSample;
|
||||
colorG += (1.0f - alphaAccum) * shadedColor.y * alphaSample;
|
||||
colorB += (1.0f - alphaAccum) * shadedColor.z * alphaSample;
|
||||
alphaAccum += (1.0f - alphaAccum) * alphaSample;
|
||||
}
|
||||
|
||||
tCurrent += stepSize;
|
||||
}
|
||||
|
||||
accumR += colorR;
|
||||
accumG += colorG;
|
||||
accumB += colorB;
|
||||
}
|
||||
|
||||
// Average samples
|
||||
accumR /= (float)SAMPLES_PER_PIXEL;
|
||||
accumG /= (float)SAMPLES_PER_PIXEL;
|
||||
accumB /= (float)SAMPLES_PER_PIXEL;
|
||||
|
||||
// Final colour
|
||||
int fbIndex = (py * imageWidth + px) * 3;
|
||||
framebuffer[fbIndex + 0] = (unsigned char)(fminf(accumR, 1.f) * 255);
|
||||
framebuffer[fbIndex + 1] = (unsigned char)(fminf(accumG, 1.f) * 255);
|
||||
framebuffer[fbIndex + 2] = (unsigned char)(fminf(accumB, 1.f) * 255);
|
||||
}
|
||||
|
||||
void getTemperature(std::vector<float>& temperatureData, int idx = 0) {
|
||||
std::string path = "data/trimmed";
|
||||
|
|
@ -183,6 +52,7 @@ int main(int argc, char** argv) {
|
|||
getSpeed(data);
|
||||
|
||||
|
||||
// TODO: Eveontually remove debug below (i.e., eliminate for-loop etc.)
|
||||
// Generate debug volume data
|
||||
float* hostVolume = new float[VOLUME_WIDTH * VOLUME_HEIGHT * VOLUME_DEPTH];
|
||||
// generateVolume(hostVolume, VOLUME_WIDTH, VOLUME_HEIGHT, VOLUME_DEPTH);
|
||||
|
|
@ -192,7 +62,7 @@ int main(int argc, char** argv) {
|
|||
if (data[i] + epsilon >= infty) hostVolume[i] = 0.0f;
|
||||
}
|
||||
|
||||
// Min-max normalization
|
||||
// Min-max normalization
|
||||
float minVal = *std::min_element(hostVolume, hostVolume + VOLUME_WIDTH * VOLUME_HEIGHT * VOLUME_DEPTH);
|
||||
float maxVal = *std::max_element(hostVolume, hostVolume + VOLUME_WIDTH * VOLUME_HEIGHT * VOLUME_DEPTH);
|
||||
for (int i = 0; i < VOLUME_WIDTH * VOLUME_HEIGHT * VOLUME_DEPTH; i++) {
|
||||
|
|
@ -204,17 +74,15 @@ int main(int argc, char** argv) {
|
|||
cudaMalloc((void**)&d_volume, volumeSize);
|
||||
cudaMemcpy(d_volume, hostVolume, volumeSize, cudaMemcpyHostToDevice);
|
||||
|
||||
int w = VOLUME_WIDTH, h = VOLUME_HEIGHT, d = VOLUME_DEPTH;
|
||||
cudaMemcpyToSymbol(d_volumeWidth, &w, sizeof(int));
|
||||
cudaMemcpyToSymbol(d_volumeHeight, &h, sizeof(int));
|
||||
cudaMemcpyToSymbol(d_volumeDepth, &d, sizeof(int));
|
||||
|
||||
// Allocate framebuffer
|
||||
unsigned char* d_framebuffer;
|
||||
size_t fbSize = IMAGE_WIDTH * IMAGE_HEIGHT * 3 * sizeof(unsigned char);
|
||||
cudaMalloc((void**)&d_framebuffer, fbSize);
|
||||
cudaMemset(d_framebuffer, 0, fbSize);
|
||||
|
||||
// Copy external constants from consts.h to cuda
|
||||
copyConstantsToDevice();
|
||||
|
||||
// Launch kernel
|
||||
dim3 blockSize(16, 16); // TODO: Figure out a good size for parallelization
|
||||
dim3 gridSize((IMAGE_WIDTH + blockSize.x - 1)/blockSize.x,
|
||||
|
|
@ -222,15 +90,7 @@ int main(int argc, char** argv) {
|
|||
|
||||
raycastKernel<<<gridSize, blockSize>>>(
|
||||
d_volume,
|
||||
d_framebuffer,
|
||||
IMAGE_WIDTH,
|
||||
IMAGE_HEIGHT,
|
||||
cameraPos,
|
||||
cameraDir.normalize(),
|
||||
cameraUp.normalize(),
|
||||
fov,
|
||||
stepSize,
|
||||
lightPos
|
||||
d_framebuffer
|
||||
);
|
||||
cudaDeviceSynchronize();
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue