Tried using DVR on actual data

This commit is contained in:
Martin Opat 2024-12-29 21:23:58 +01:00
parent f0c6141f2c
commit daf19578e7
2 changed files with 315 additions and 258 deletions

View File

@ -1,276 +1,333 @@
// #include <iostream> #include <iostream>
// #include <fstream> #include <fstream>
// #include <cmath> #include <cmath>
#include <cuda_runtime.h>
#include <vector>
#include <algorithm>
#include "hurricanedata/datareader.h"
#include "linalg/linalg.h"
#include "objs/sphere.h"
#include "img/handler.h"
// TODO: Eventually, export this into a better place (i.e., such that we do not have to recompile every time we change a parameter)
static const int VOLUME_WIDTH = 49;
static const int VOLUME_HEIGHT = 51;
static const int VOLUME_DEPTH = 42;
static const int IMAGE_WIDTH = 2560;
static const int IMAGE_HEIGHT = 1440;
static const int SAMPLES_PER_PIXEL = 8; // TODO: Right now uses simple variance, consider using something more advanced (e.g., some commonly-used noise map)
__constant__ int d_volumeWidth;
__constant__ int d_volumeHeight;
__constant__ int d_volumeDepth;
static float* d_volume = nullptr; // TODO: Adjust according to how data is loaded
// ----------------------------------------------------------------------------------------------------
__device__ Vec3 phongShading(const Vec3& normal, const Vec3& lightDir, const Vec3& viewDir, const Vec3& baseColor) {
double ambientStrength = 0.3;
double diffuseStrength = 0.8;
double specularStrength = 0.5;
int shininess = 32;
Vec3 ambient = baseColor * ambientStrength;
double diff = fmax(normal.dot(lightDir), 0.0);
Vec3 diffuse = baseColor * (diffuseStrength * diff);
Vec3 reflectDir = (normal * (2.0 * normal.dot(lightDir)) - lightDir).normalize();
double spec = pow(fmax(viewDir.dot(reflectDir), 0.0), shininess);
Vec3 specular = Vec3(1.0, 1.0, 1.0) * (specularStrength * spec);
return ambient + diffuse + specular;
}
// Raycast + phong
__global__ void raycastKernel(float* volumeData, unsigned char* framebuffer, int imageWidth, int imageHeight, Vec3 cameraPos, Vec3 cameraDir, Vec3 cameraUp, float fov, float stepSize, Vec3 lightPos) {
int px = blockIdx.x * blockDim.x + threadIdx.x;
int py = blockIdx.y * blockDim.y + threadIdx.y;
if (px >= imageWidth || py >= imageHeight) return;
float accumR = 0.0f;
float accumG = 0.0f;
float accumB = 0.0f;
// Multiple samples per pixel
for (int s = 0; s < SAMPLES_PER_PIXEL; s++) {
// Map to [-1, 1]
float u = ((px + 0.5f) / imageWidth ) * 2.0f - 1.0f;
float v = ((py + 0.5f) / imageHeight) * 2.0f - 1.0f;
// TODO: Move this (and all similar transformation code) to its own separate file
float tanHalfFov = tanf(fov * 0.5f);
u *= tanHalfFov;
v *= tanHalfFov;
// Find ray direction
Vec3 cameraRight = (cameraDir.cross(cameraUp)).normalize();
cameraUp = (cameraRight.cross(cameraDir)).normalize();
Vec3 rayDir = (cameraDir + cameraRight*u + cameraUp*v).normalize();
// Intersect (for simplicity just a 3D box from 0 to 1 in all dimensions) - TODO: Think about whether this is the best way to do this
float tNear = 0.f; // TODO: These are also linear transforms, so move away
float tFar = 1e6f;
auto intersectAxis = [&](float start, float dirVal) {
if (fabsf(dirVal) < 1e-10f) { // TDDO: Add a constant - epsilon
if (start < 0.f || start > 1.f) {
tNear = 1e9f;
tFar = -1e9f;
}
} else {
float t0 = (0.0f - start) / dirVal; // TODO: 0.0 and 1.0 depend on the box size -> move to a constant
float t1 = (1.0f - start) / dirVal;
if (t0>t1) {
float tmp=t0;
t0=t1;
t1=tmp;
}
if (t0>tNear) tNear = t0;
if (t1<tFar ) tFar = t1;
}
};
intersectAxis(cameraPos.x, rayDir.x);
intersectAxis(cameraPos.y, rayDir.y);
intersectAxis(cameraPos.z, rayDir.z);
if (tNear > tFar) continue; // No intersectionn
if (tNear < 0.0f) tNear = 0.0f;
float colorR = 0.f, colorG = 0.f, colorB = 0.f;
float alphaAccum = 0.f;
float tCurrent = tNear;
while (tCurrent < tFar && alphaAccum < 0.65f) { // TODO: Idk what a good accumulation value is
Vec3 pos = cameraPos + rayDir * tCurrent;
// Convert to volume indices
float fx = pos.x * (d_volumeWidth - 1);
float fy = pos.y * (d_volumeHeight - 1);
float fz = pos.z * (d_volumeDepth - 1);
int ix = (int)roundf(fx);
int iy = (int)roundf(fy);
int iz = (int)roundf(fz);
// Sample
float density = sampleVolumeNearest(volumeData, d_volumeWidth, d_volumeHeight, d_volumeDepth, ix, iy, iz);
// Basic transfer function. TODO: Move to a separate file, and then improve
float alphaSample = density * 0.1f;
// float alphaSample = 1.0f - expf(-density * 0.1f);
Vec3 baseColor = Vec3(density, 0.1f*density, 1.f - density); // TODO: Implement a proper transfer function
// If density ~ 0, skip shading
if (density > 0.001f) {
Vec3 grad = computeGradient(volumeData, d_volumeWidth, d_volumeHeight, d_volumeDepth, ix, iy, iz);
Vec3 normal = -grad.normalize();
Vec3 lightDir = (lightPos - pos).normalize();
Vec3 viewDir = -rayDir.normalize();
// Apply Phong
Vec3 shadedColor = phongShading(normal, lightDir, viewDir, baseColor);
// Compose
colorR += (1.0f - alphaAccum) * shadedColor.x * alphaSample;
colorG += (1.0f - alphaAccum) * shadedColor.y * alphaSample;
colorB += (1.0f - alphaAccum) * shadedColor.z * alphaSample;
alphaAccum += (1.0f - alphaAccum) * alphaSample;
}
tCurrent += stepSize;
}
accumR += colorR;
accumG += colorG;
accumB += colorB;
}
// Average samples
accumR /= (float)SAMPLES_PER_PIXEL;
accumG /= (float)SAMPLES_PER_PIXEL;
accumB /= (float)SAMPLES_PER_PIXEL;
// Final colour
int fbIndex = (py * imageWidth + px) * 3;
framebuffer[fbIndex + 0] = (unsigned char)(fminf(accumR, 1.f) * 255);
framebuffer[fbIndex + 1] = (unsigned char)(fminf(accumG, 1.f) * 255);
framebuffer[fbIndex + 2] = (unsigned char)(fminf(accumB, 1.f) * 255);
}
void getTemperature(std::vector<float>& temperatureData) {
std::string path = "data/trimmed";
std::string variable = "T";
DataReader dataReader(path, variable);
int idx = 5;
size_t dataLength = dataReader.fileLength(idx);
temperatureData.resize(dataLength);
dataReader.loadFile(temperatureData.data(), idx);
}
void getSpeed(std::vector<float>& speedData) {
std::string path = "data/trimmed";
std::string varU = "U";
std::string varV = "V";
DataReader dataReaderU(path, varU);
DataReader dataReaderV(path, varV);
int idx = 50;
size_t dataLength = dataReaderU.fileLength(idx);
speedData.resize(dataLength);
std::vector<float> uData(dataLength);
std::vector<float> vData(dataLength);
dataReaderU.loadFile(uData.data(), idx);
dataReaderV.loadFile(vData.data(), idx);
for (int i = 0; i < dataLength; i++) {
speedData[i] = sqrt(uData[i]*uData[i] + vData[i]*vData[i]);
}
}
int main(int argc, char** argv) {
std::vector<float> data;
// getTemperature(data);
getSpeed(data);
// Generate debug volume data
float* hostVolume = new float[VOLUME_WIDTH * VOLUME_HEIGHT * VOLUME_DEPTH];
// generateVolume(hostVolume, VOLUME_WIDTH, VOLUME_HEIGHT, VOLUME_DEPTH);
for (int i = 0; i < VOLUME_WIDTH * VOLUME_HEIGHT * VOLUME_DEPTH; i++) {
// Discard temperatures above a small star (supposedly, missing temperature values)
hostVolume[i] = data[i];
if (data[i] > 1000.0f) hostVolume[i] = 0.0f;
}
// Min-max normalization
float minVal = *std::min_element(hostVolume, hostVolume + VOLUME_WIDTH * VOLUME_HEIGHT * VOLUME_DEPTH);
float maxVal = *std::max_element(hostVolume, hostVolume + VOLUME_WIDTH * VOLUME_HEIGHT * VOLUME_DEPTH);
for (int i = 0; i < VOLUME_WIDTH * VOLUME_HEIGHT * VOLUME_DEPTH; i++) {
hostVolume[i] = (hostVolume[i] - minVal) / (maxVal - minVal);
}
// Allocate + copy data to GPU
size_t volumeSize = sizeof(float) * VOLUME_WIDTH * VOLUME_HEIGHT * VOLUME_DEPTH;
cudaMalloc((void**)&d_volume, volumeSize);
cudaMemcpy(d_volume, hostVolume, volumeSize, cudaMemcpyHostToDevice);
int w = VOLUME_WIDTH, h = VOLUME_HEIGHT, d = VOLUME_DEPTH;
cudaMemcpyToSymbol(d_volumeWidth, &w, sizeof(int));
cudaMemcpyToSymbol(d_volumeHeight, &h, sizeof(int));
cudaMemcpyToSymbol(d_volumeDepth, &d, sizeof(int));
// Allocate framebuffer
unsigned char* d_framebuffer;
size_t fbSize = IMAGE_WIDTH * IMAGE_HEIGHT * 3 * sizeof(unsigned char);
cudaMalloc((void**)&d_framebuffer, fbSize);
cudaMemset(d_framebuffer, 0, fbSize);
// Camera and Light
Vec3 cameraPos(-0.7, -1.0, -2.0);
Vec3 cameraDir(0.4, 0.6, 1.0);
Vec3 cameraUp(0.0, 1.0, 0.0);
float fov = 60.0f * (M_PI / 180.0f);
float stepSize = 0.002f;
Vec3 lightPos(1.5, 2.0, -1.0);
// Launch kernel
dim3 blockSize(16, 16);
dim3 gridSize((IMAGE_WIDTH + blockSize.x - 1)/blockSize.x,
(IMAGE_HEIGHT + blockSize.y - 1)/blockSize.y);
raycastKernel<<<gridSize, blockSize>>>(
d_volume,
d_framebuffer,
IMAGE_WIDTH,
IMAGE_HEIGHT,
cameraPos,
cameraDir.normalize(),
cameraUp.normalize(),
fov,
stepSize,
lightPos
);
cudaDeviceSynchronize();
// Copy framebuffer back to CPU
unsigned char* hostFramebuffer = new unsigned char[IMAGE_WIDTH * IMAGE_HEIGHT * 3];
cudaMemcpy(hostFramebuffer, d_framebuffer, fbSize, cudaMemcpyDeviceToHost);
// Export image
saveImage("output.ppm", hostFramebuffer, IMAGE_WIDTH, IMAGE_HEIGHT);
// Cleanup
delete[] hostVolume;
delete[] hostFramebuffer;
cudaFree(d_volume);
cudaFree(d_framebuffer);
std::cout << "Phong-DVR rendering done. Image saved to output.ppm" << std::endl;
return 0;
}
// // gpu-buffer-handler branch main
// #include "hurricanedata/fielddata.h"
// #include "hurricanedata/gpubufferhandler.h"
// #include "hurricanedata/datareader.h"
// #include "hurricanedata/gpubuffer.h"
// #include <cuda_runtime.h> // #include <cuda_runtime.h>
// #include <device_launch_parameters.h>
// #include <iostream>
// #include <cmath>
// #include <memory>
// #include <iomanip>
// #include "linalg/linalg.h" // __global__ void middleOfTwoValues(float *ans, const FieldMetadata &fmd, FieldData fd) {
// #include "objs/sphere.h" // float xi = getVal(fmd, fd, 0, 20, 100, 100);
// #include "img/handler.h" // float yi = getVal(fmd, fd, 1, 20, 100, 100);
// *ans = (xi+yi)/2;
// // TODO: Eventually, export this into a better place (i.e., such that we do not have to recompile every time we change a parameter)
// static const int VOLUME_WIDTH = 1024;
// static const int VOLUME_HEIGHT = 1024;
// static const int VOLUME_DEPTH = 1024;
// static const int IMAGE_WIDTH = 2560;
// static const int IMAGE_HEIGHT = 1440;
// static const int SAMPLES_PER_PIXEL = 8; // TODO: Right now uses simple variance, consider using something more advanced (e.g., some commonly-used noise map)
// __constant__ int d_volumeWidth;
// __constant__ int d_volumeHeight;
// __constant__ int d_volumeDepth;
// static float* d_volume = nullptr; // TODO: Adjust according to how data is loaded
// // ----------------------------------------------------------------------------------------------------
// __device__ Vec3 phongShading(const Vec3& normal, const Vec3& lightDir, const Vec3& viewDir, const Vec3& baseColor) {
// double ambientStrength = 0.3;
// double diffuseStrength = 0.8;
// double specularStrength = 0.5;
// int shininess = 32;
// Vec3 ambient = baseColor * ambientStrength;
// double diff = fmax(normal.dot(lightDir), 0.0);
// Vec3 diffuse = baseColor * (diffuseStrength * diff);
// Vec3 reflectDir = (normal * (2.0 * normal.dot(lightDir)) - lightDir).normalize();
// double spec = pow(fmax(viewDir.dot(reflectDir), 0.0), shininess);
// Vec3 specular = Vec3(1.0, 1.0, 1.0) * (specularStrength * spec);
// return ambient + diffuse + specular;
// } // }
// // Raycast + phong // int main() {
// __global__ void raycastKernel(float* volumeData, unsigned char* framebuffer, int imageWidth, int imageHeight, Vec3 cameraPos, Vec3 cameraDir, Vec3 cameraUp, float fov, float stepSize, Vec3 lightPos) { // // std::string path = "data/atmosphere_MERRA-wind-speed[179253532]";
// int px = blockIdx.x * blockDim.x + threadIdx.x; // std::string path = "data/trimmed";
// int py = blockIdx.y * blockDim.y + threadIdx.y;
// if (px >= imageWidth || py >= imageHeight) return;
// float accumR = 0.0f; // std::string variable = "T";
// float accumG = 0.0f;
// float accumB = 0.0f;
// // Multiple samples per pixel // DataReader dataReader{path, variable};
// for (int s = 0; s < SAMPLES_PER_PIXEL; s++) {
// // Map to [-1, 1]
// float u = ((px + 0.5f) / imageWidth ) * 2.0f - 1.0f;
// float v = ((py + 0.5f) / imageHeight) * 2.0f - 1.0f;
// // TODO: Move this (and all similar transformation code) to its own separate file // std::cout << "created datareader\n";
// float tanHalfFov = tanf(fov * 0.5f);
// u *= tanHalfFov;
// v *= tanHalfFov;
// // Find ray direction // GPUBuffer buffer (dataReader);
// Vec3 cameraRight = (cameraDir.cross(cameraUp)).normalize();
// cameraUp = (cameraRight.cross(cameraDir)).normalize();
// Vec3 rayDir = (cameraDir + cameraRight*u + cameraUp*v).normalize();
// // Intersect (for simplicity just a 3D box from 0 to 1 in all dimensions) - TODO: Think about whether this is the best way to do this // std::cout << "created buffer\n";
// float tNear = 0.f; // TODO: These are also linear transforms, so move away
// float tFar = 1e6f;
// auto intersectAxis = [&](float start, float dirVal) { // GPUBufferHandler bufferHandler(buffer);
// if (fabsf(dirVal) < 1e-10f) { // TDDO: Add a constant - epsilon
// if (start < 0.f || start > 1.f) {
// tNear = 1e9f;
// tFar = -1e9f;
// }
// } else {
// float t0 = (0.0f - start) / dirVal; // TODO: 0.0 and 1.0 depend on the box size -> move to a constant
// float t1 = (1.0f - start) / dirVal;
// if (t0>t1) {
// float tmp=t0;
// t0=t1;
// t1=tmp;
// }
// if (t0>tNear) tNear = t0;
// if (t1<tFar ) tFar = t1;
// }
// };
// intersectAxis(cameraPos.x, rayDir.x); // float *ptr_test_read;
// intersectAxis(cameraPos.y, rayDir.y); // cudaMallocManaged(&ptr_test_read, sizeof(float));
// intersectAxis(cameraPos.z, rayDir.z);
// if (tNear > tFar) continue; // No intersectionn // std::cout << "created buffer handler\n";
// if (tNear < 0.0f) tNear = 0.0f; // for (int i = 0; i < 10; i++) {
// FieldData fd = bufferHandler.nextFieldData();
// float colorR = 0.f, colorG = 0.f, colorB = 0.f; // middleOfTwoValues<<<1, 1>>>(ptr_test_read, *bufferHandler.fmd, fd);
// float alphaAccum = 0.f;
// float tCurrent = tNear;
// while (tCurrent < tFar && alphaAccum < 0.99f) {
// Vec3 pos = cameraPos + rayDir * tCurrent;
// // Convert to volume indices
// float fx = pos.x * (d_volumeWidth - 1);
// float fy = pos.y * (d_volumeHeight - 1);
// float fz = pos.z * (d_volumeDepth - 1);
// int ix = (int)roundf(fx);
// int iy = (int)roundf(fy);
// int iz = (int)roundf(fz);
// // Sample
// float density = sampleVolumeNearest(volumeData, d_volumeWidth, d_volumeHeight, d_volumeDepth, ix, iy, iz);
// // Basic transfer function. TODO: Move to a separate file, and then improve
// float alphaSample = density * 0.05f;
// Vec3 baseColor = Vec3(density, 0.1f*density, 1.f - density);
// // If density ~ 0, skip shading
// if (density > 0.001f) {
// Vec3 grad = computeGradient(volumeData, d_volumeWidth, d_volumeHeight, d_volumeDepth, ix, iy, iz);
// Vec3 normal = -grad.normalize();
// Vec3 lightDir = (lightPos - pos).normalize();
// Vec3 viewDir = -rayDir.normalize();
// // Apply Phong
// Vec3 shadedColor = phongShading(normal, lightDir, viewDir, baseColor);
// // Compose
// colorR += (1.0f - alphaAccum) * shadedColor.x * alphaSample;
// colorG += (1.0f - alphaAccum) * shadedColor.y * alphaSample;
// colorB += (1.0f - alphaAccum) * shadedColor.z * alphaSample;
// alphaAccum += (1.0f - alphaAccum) * alphaSample;
// }
// tCurrent += stepSize;
// }
// accumR += colorR;
// accumG += colorG;
// accumB += colorB;
// }
// // Average samples
// accumR /= (float)SAMPLES_PER_PIXEL;
// accumG /= (float)SAMPLES_PER_PIXEL;
// accumB /= (float)SAMPLES_PER_PIXEL;
// // Final colour
// int fbIndex = (py * imageWidth + px) * 3;
// framebuffer[fbIndex + 0] = (unsigned char)(fminf(accumR, 1.f) * 255);
// framebuffer[fbIndex + 1] = (unsigned char)(fminf(accumG, 1.f) * 255);
// framebuffer[fbIndex + 2] = (unsigned char)(fminf(accumB, 1.f) * 255);
// }
// int main(int argc, char** argv) {
// // Generate debug volume data
// float* hostVolume = new float[VOLUME_WIDTH * VOLUME_HEIGHT * VOLUME_DEPTH];
// generateVolume(hostVolume, VOLUME_WIDTH, VOLUME_HEIGHT, VOLUME_DEPTH);
// // Allocate + copy data to GPU
// size_t volumeSize = sizeof(float) * VOLUME_WIDTH * VOLUME_HEIGHT * VOLUME_DEPTH;
// cudaMalloc((void**)&d_volume, volumeSize);
// cudaMemcpy(d_volume, hostVolume, volumeSize, cudaMemcpyHostToDevice);
// int w = VOLUME_WIDTH, h = VOLUME_HEIGHT, d = VOLUME_DEPTH;
// cudaMemcpyToSymbol(d_volumeWidth, &w, sizeof(int));
// cudaMemcpyToSymbol(d_volumeHeight, &h, sizeof(int));
// cudaMemcpyToSymbol(d_volumeDepth, &d, sizeof(int));
// // Allocate framebuffer
// unsigned char* d_framebuffer;
// size_t fbSize = IMAGE_WIDTH * IMAGE_HEIGHT * 3 * sizeof(unsigned char);
// cudaMalloc((void**)&d_framebuffer, fbSize);
// cudaMemset(d_framebuffer, 0, fbSize);
// // Camera and Light
// Vec3 cameraPos(0.5, 0.5, -2.0);
// Vec3 cameraDir(0.0, 0.0, 1.0);
// Vec3 cameraUp(0.0, 1.0, 0.0);
// float fov = 60.0f * (M_PI / 180.0f);
// float stepSize = 0.002f;
// Vec3 lightPos(1.5, 2.0, -1.0);
// // Launch kernel
// dim3 blockSize(16, 16);
// dim3 gridSize((IMAGE_WIDTH + blockSize.x - 1)/blockSize.x,
// (IMAGE_HEIGHT + blockSize.y - 1)/blockSize.y);
// raycastKernel<<<gridSize, blockSize>>>(
// d_volume,
// d_framebuffer,
// IMAGE_WIDTH,
// IMAGE_HEIGHT,
// cameraPos,
// cameraDir.normalize(),
// cameraUp.normalize(),
// fov,
// stepSize,
// lightPos
// );
// cudaDeviceSynchronize(); // cudaDeviceSynchronize();
// std::cout << "ptr_test_read = " << std::fixed << std::setprecision(6) << *ptr_test_read << "\n";
// }
// // Copy framebuffer back to CPU // // TODO: measure data transfer time in this example code.
// unsigned char* hostFramebuffer = new unsigned char[IMAGE_WIDTH * IMAGE_HEIGHT * 3]; // cudaFree(ptr_test_read);
// cudaMemcpy(hostFramebuffer, d_framebuffer, fbSize, cudaMemcpyDeviceToHost);
// // Export image
// saveImage("output.ppm", hostFramebuffer, IMAGE_WIDTH, IMAGE_HEIGHT);
// // Cleanup
// delete[] hostVolume;
// delete[] hostFramebuffer;
// cudaFree(d_volume);
// cudaFree(d_framebuffer);
// std::cout << "Phong-DVR rendering done. Image saved to output.ppm" << std::endl;
// return 0; // return 0;
// } // }
// gpu-buffer-handler branch main
#include "hurricanedata/fielddata.h"
#include "hurricanedata/gpubufferhandler.h"
#include "hurricanedata/datareader.h"
#include "hurricanedata/gpubuffer.h"
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <iostream>
#include <cmath>
#include <memory>
#include <iomanip>
__global__ void middleOfTwoValues(float *ans, const FieldMetadata &fmd, FieldData fd) {
float xi = getVal(fmd, fd, 0, 20, 100, 100);
float yi = getVal(fmd, fd, 1, 20, 100, 100);
*ans = (xi+yi)/2;
}
int main() {
std::string path = "data/atmosphere_MERRA-wind-speed[179253532]";
std::string variable = "T";
DataReader dataReader{path, variable};
std::cout << "created datareader\n";
GPUBuffer buffer (dataReader);
std::cout << "created buffer\n";
GPUBufferHandler bufferHandler(buffer);
float *ptr_test_read;
cudaMallocManaged(&ptr_test_read, sizeof(float));
std::cout << "created buffer handler\n";
for (int i = 0; i < 10; i++) {
FieldData fd = bufferHandler.nextFieldData();
middleOfTwoValues<<<1, 1>>>(ptr_test_read, *bufferHandler.fmd, fd);
cudaDeviceSynchronize();
std::cout << "ptr_test_read = " << std::fixed << std::setprecision(6) << *ptr_test_read << "\n";
}
// TODO: measure data transfer time in this example code.
cudaFree(ptr_test_read);
return 0;
}