working buffering

This commit is contained in:
Robin 2024-12-26 12:33:07 +01:00
parent 109566d7b6
commit c4a2ce1b44
13 changed files with 187 additions and 155 deletions

View File

@ -1,6 +1,6 @@
# Compiler and flags
NVCC = nvcc
CXXFLAGS = -I./src -I./hurricanedata -std=c++17 $(shell nc-config --cxx4flags) $(shell nc-config --cxx4libs)
CXXFLAGS = -I./src -I./hurricanedata -std=c++17 $(shell nc-config --cxx4flags) $(shell nc-config --cxx4libs) -g -G
COMPILE_OBJ_FLAGS = --device-c
# Directories

View File

@ -43,12 +43,13 @@ void DataReader::loadFile(T* dataOut, size_t fileIndex) {
}
template <typename T>
void DataReader::loadFile(T* dataOut, size_t fileIndex, const string& variableName) {
void DataReader::loadFile(T* dataOut, size_t fileIndex, const string& varName) {
NcFile data(filePathManager.getPath(fileIndex), NcFile::read);
multimap<string, NcVar> vars = data.getVars();
NcVar var = vars.find(variableName)->second;
NcVar var = vars.find(varName)->second;
cout << "var = " << varName << "with size = " << var.getDim(0).getSize() << "\n";
var.getVar(dataOut);
}

View File

@ -21,9 +21,6 @@ public:
size_t axisLength(size_t fileIndex, const std::string& axisName);
// template <typename T>
// void readAndAllocateAxis(T** axis_ptr, size_t *size, NcVar var) {
~DataReader();
private:
FilePathManager filePathManager;

View File

@ -8,10 +8,12 @@ __device__ float getVal(
const size_t &latInd,
const size_t &lonInd
) {
size_t valArrInd = (d.fieldInd + timeInd) / md.numberOfTimeStepsPerFile;
size_t trueTimeInd = (d.fieldInd + timeInd) % md.numberOfTimeStepsPerFile;
size_t sizeSpatialData = md.widthSize*md.heightSize*md.depthSize;
size_t size2DMapData = md.widthSize*md.heightSize;
return d.valArrays[0][
timeInd*sizeSpatialData
return d.valArrays[valArrInd][
trueTimeInd*sizeSpatialData
+ levInd*size2DMapData
+ latInd*md.widthSize
+ lonInd

View File

@ -14,6 +14,10 @@ struct FieldMetadata {
double *lons;
double *lats;
double *levs;
size_t timeSize; // Number of different times
size_t numberOfTimeStepsPerFile;
};
using FieldMetadata = FieldMetadata;
@ -21,16 +25,15 @@ using FieldMetadata = FieldMetadata;
struct FieldData {
static constexpr size_t FILESNUM = 2; // Number of files stored in a FieldData struct.
// An array of length FILESNUM storing pointers to 4D arrays stored in device memory.
float *valArrays[FILESNUM];
// A uniform array of length FILESNUM storing pointers to 4D arrays stored in device memory.
float **valArrays;
size_t timeSize; // Number of different times
// times is a managed Unified Memory array of size timeSize that indicates
// that getVal(md, d, t, i, j, k) is a value at time times[t].
int *times;
size_t fieldInd;
// times is a managed Unified Memory array of size (FILESNUM, numberOfTimeStepsPerFile)
int **times;
};
using FieldData = FieldData;
extern __device__ float getVal(
const FieldMetadata &md,

View File

@ -18,6 +18,8 @@ struct File {
size_t size;
float *h_data; // host data
float *d_data; // device data
int *times;
size_t timeSize;
};
struct LoadFileJob {
@ -53,6 +55,9 @@ public:
size_t getSize(size_t fileIndex); // Most probably blocking
void getAxis(GetAxisDoubleJob job);
void getAxis(GetAxisIntJob job);
template <typename T>
std::pair<size_t, T *> getAxis(size_t fileIndex, const std::string& axisName); // Most probably blocking
~impl();
File buffer[numBufferedFiles];
@ -84,37 +89,44 @@ size_t GPUBuffer::impl::getSize(size_t fileIndex) {
return future.get();
}
template <>
pair<size_t, double *> GPUBuffer::getAxis(size_t fileIndex, const string& axisName) {
promise<pair<size_t, double *>> promise;
future<pair<size_t, double *>> future = promise.get_future();
{
lock_guard<mutex> lk(pImpl->queuecv_m);
pImpl->jobs.push(GetAxisDoubleJob{fileIndex, axisName, move(promise)});
}
pImpl->queuecv.notify_all();
future.wait();
return future.get();
template <typename T>
pair<size_t, T *> GPUBuffer::getAxis(size_t fileIndex, const string& axisName) {
return pImpl->getAxis<T>(fileIndex, axisName);
}
template pair<size_t, int *> GPUBuffer::getAxis<int>(size_t fileIndex, const string& axisName);
template pair<size_t, double *> GPUBuffer::getAxis<double>(size_t fileIndex, const string& axisName);
template <>
pair<size_t, int *> GPUBuffer::getAxis(size_t fileIndex, const string& axisName) {
promise<pair<size_t, int *>> promise;
future<pair<size_t, int *>> future = promise.get_future();
pair<size_t, double *> GPUBuffer::impl::getAxis(size_t fileIndex, const string& axisName) {
promise<pair<size_t, double *>> promise;
future<pair<size_t, double *>> future = promise.get_future();
{
lock_guard<mutex> lk(pImpl->queuecv_m);
pImpl->jobs.push(GetAxisIntJob{fileIndex, axisName, move(promise)});
lock_guard<mutex> lk(queuecv_m);
jobs.push(GetAxisDoubleJob{fileIndex, axisName, move(promise)});
}
pImpl->queuecv.notify_all();
queuecv.notify_all();
future.wait();
return future.get();
}
template pair<size_t, int *> GPUBuffer::getAxis<int>(size_t fileIndex, const string& axisName);
template pair<size_t, double *> GPUBuffer::impl::getAxis<double>(size_t fileIndex, const string& axisName);
template <>
pair<size_t, int *> GPUBuffer::impl::getAxis(size_t fileIndex, const string& axisName) {
promise<pair<size_t, int *>> promise;
future<pair<size_t, int *>> future = promise.get_future();
{
lock_guard<mutex> lk(queuecv_m);
jobs.push(GetAxisIntJob{fileIndex, axisName, move(promise)});
}
queuecv.notify_all();
future.wait();
return future.get();
}
template pair<size_t, int *> GPUBuffer::impl::getAxis<int>(size_t fileIndex, const string& axisName);
GPUBuffer::impl::impl(DataReader& dataReader): dataReader(dataReader) {
cudaStreamCreate(&iostream);
@ -122,34 +134,26 @@ GPUBuffer::impl::impl(DataReader& dataReader): dataReader(dataReader) {
ioworker = make_unique<thread>([this]() { worker(); });
size_t size = getSize(0);
cout << "size = " << size << "\n";
auto x = getAxis<int>(0, "time");
size_t sizeTime = x.first;
cudaFree(x.second);
for (size_t i = 0; i < numBufferedFiles; i++) {
{
File &file = buffer[i];
lock_guard<mutex> lk(file.m);
cudaMallocHost(&file.h_data, sizeof(float)*size);
cudaError_t status = cudaMalloc(&file.d_data, sizeof(float)*size);
if (status != cudaSuccess)
cerr << "Error allocating device memory. Status code: " << status << "\n";
cudaMalloc(&file.d_data, sizeof(float)*size);
cudaMallocManaged(&file.times, sizeof(int)*sizeTime);
file.size = size;
file.valid = false;
file.timeSize = sizeTime;
}
loadFile(i, i);
{
// lock_guard<mutex> lk(queuecv_m);
// LoadFileJob job = {
// .fileIndex = i,
// .bufferIndex = i
// };
// cout << "enqueue file load job\n";
// jobs.push(job);
}
// loadFile(i, i);
}
}
GPUBuffer::~GPUBuffer() { }
GPUBuffer::~GPUBuffer() {
}
GPUBuffer::impl::~impl() {
{
@ -162,6 +166,7 @@ GPUBuffer::impl::~impl() {
File &file = buffer[i];
cudaFree(file.d_data);
cudaFree(file.h_data);
cudaFree(file.times);
}
cudaStreamDestroy(iostream);
}
@ -172,11 +177,12 @@ void GPUBuffer::impl::loadFile(LoadFileJob job) {
{
lock_guard<mutex> lk(file.m);
assert(!file.valid);
dataReader.loadFile<int>(file.times, job.fileIndex, "time"); // TODO: Times dont store anything useful :(
cout << "times[1] (inside inside) " << file.times[1] << " for file with fileindex = " << job.fileIndex << "\n";
dataReader.loadFile<float>(file.h_data, job.fileIndex);
cudaMemcpyAsync(file.d_data, file.h_data, sizeof(float)*file.size, cudaMemcpyHostToDevice, iostream);
cudaStreamSynchronize(iostream);
buffer[job.bufferIndex].valid = true;
cout << "loaded file with index" << job.bufferIndex << "\n";
}
file.cv.notify_all();
}
@ -190,7 +196,7 @@ void GPUBuffer::impl::getAxis(GetAxisDoubleJob job) {
pair<size_t, double *> array;
array.first = dataReader.axisLength(job.fileIndex, job.axisName);
cudaError_t status = cudaMallocManaged(&array.second, array.first*sizeof(double));
dataReader.loadFile<double>(array.second, job.fileIndex);
dataReader.loadFile<double>(array.second, job.fileIndex, job.axisName);
job.axis.set_value(array);
}
@ -272,6 +278,8 @@ DataHandle GPUBuffer::getDataHandle(size_t bufferIndex) {
DataHandle dh = {
.d_data = file.d_data,
.times = file.times,
.timeSize = file.timeSize,
.size = file.size
};
return dh;

View File

@ -8,7 +8,9 @@
#include "datareader.h"
struct DataHandle {
float *d_data;
float *d_data; // Device memory
int* times; // Uniform memory
size_t timeSize;
size_t size;
};

View File

@ -1,60 +1,93 @@
#include "gpubufferhandler.h"
#include "fielddata.h"
#include "gpubufferhelper.h"
#include <netcdf>
#include <iostream>
using namespace std;
using namespace netCDF;
GPUBufferHandler::GPUBufferHandler(const std::string &path, std::string variableName):
filePathManager(path), variableName(variableName), presentTimeIndex(0), fileIndex(0) {
NcFile data(filePathManager.getPath(fileIndex), NcFile::read);
multimap<string, NcVar> vars = data.getVars();
GPUBufferHandler::GPUBufferHandler(GPUBuffer& gpuBuffer):
gpuBuffer(gpuBuffer), fieldInd(0), bufferInd(0), fileInd(0) {
cudaMallocManaged(&fmd, sizeof(FieldMetadata));
readAndAllocateAxis<double>(&fmd->lons, &fmd->widthSize, vars.find("lon")->second);
readAndAllocateAxis<double>(&fmd->lats, &fmd->heightSize, vars.find("lat")->second);
readAndAllocateAxis<double>(&fmd->levs, &fmd->depthSize, vars.find("lev")->second);
auto [widthSize, lons] = gpuBuffer.getAxis<double>(0, "lon");
fmd->widthSize = widthSize;
fmd->lons = lons;
auto [heightSize, lats] = gpuBuffer.getAxis<double>(0, "lat");
fmd->heightSize = heightSize;
fmd->lats = lats;
auto [depthSize, levs] = gpuBuffer.getAxis<double>(0, "lev");
fmd->depthSize = depthSize;
fmd->levs = levs;
for (size_t i = 0; i < GPUBuffer::numBufferedFiles; i++) {
gpuBuffer.loadFile(fileInd,fileInd);
fileInd++;
}
fmd->numberOfTimeStepsPerFile = 4; // TODO: Maybe find a better way to do this.
fmd->timeSize = GPUBufferHandler::numberOfTimeStepsPerField;
}
FieldData GPUBufferHandler::setupField(size_t newEndBufferInd) {
FieldData fd;
cudaMallocManaged(&fd.valArrays, sizeof(sizeof(float *)*FieldData::FILESNUM));
cudaMallocManaged(&fd.times, sizeof(sizeof(int *)*FieldData::FILESNUM));
size_t fieldDataInd = 0;
cout << "getting field from files " << bufferInd << " to " << newEndBufferInd << "\n";
for (int i = bufferInd; i <= newEndBufferInd; i++) {
cout << "getting handle for " << i << "\n";
DataHandle x = gpuBuffer.getDataHandle(i);
fd.valArrays[fieldDataInd] = x.d_data;
fd.times[fieldDataInd] = x.times;
fieldDataInd++;
}
fd.fieldInd = fieldInd;
return fd;
}
FieldData GPUBufferHandler::nextFieldData() {
NcFile data(filePathManager.getPath(fileIndex), NcFile::read);
multimap<string, NcVar> vars = data.getVars();
FieldData fd;
size_t timeSize;
readAndAllocateAxis(&fd.times, &fd.timeSize, vars.find("time")->second);
NcVar var = vars.find(variableName)->second;
int length = 1;
for (NcDim dim: var.getDims()) {
length *= dim.getSize();
DataHandle x = gpuBuffer.getDataHandle(bufferInd);
size_t newFieldInd = (fieldInd + 1) % fmd->numberOfTimeStepsPerFile;
size_t newBufferInd = (bufferInd + ((fieldInd + 1) / fmd->numberOfTimeStepsPerFile)) % GPUBuffer::numBufferedFiles;
size_t endFieldInd = (fieldInd + GPUBufferHandler::numberOfTimeStepsPerField - 1) % fmd->numberOfTimeStepsPerFile;
size_t endBufferInd = (bufferInd + (fieldInd + GPUBufferHandler::numberOfTimeStepsPerField - 1)/fmd->numberOfTimeStepsPerFile) % GPUBuffer::numBufferedFiles;
size_t newEndFieldInd = (endFieldInd + 1) % fmd->numberOfTimeStepsPerFile;
size_t newEndBufferInd = (endBufferInd + ((endFieldInd + 1) / fmd->numberOfTimeStepsPerFile)) % GPUBuffer::numBufferedFiles;
// size_t newBufferInd = (bufferInd + 1) % GPUBuffer::numBufferedFiles;
// size_t newFieldInd = (fieldInd + ((bufferInd + 1) / 4)) % x.timeSize;
// size_t endBufferInd = (bufferInd + GPUBufferHandler::numberOfTimeStepsPerField) % GPUBuffer::numBufferedFiles;
// size_t endFieldInd = (fieldInd + ((bufferInd + GPUBufferHandler::numberOfTimeStepsPerField) / 4)) % x.timeSize;
// size_t newEndBufferInd = (endBufferInd + 1) % GPUBuffer::numBufferedFiles;
// size_t newEndFieldInd = (endFieldInd + ((endBufferInd + 1) / 4)) % x.timeSize;
if(firstTimeStep) {
firstTimeStep = false;
return setupField(endFieldInd);
}
if (newBufferInd != bufferInd) {
fileInd++;
gpuBuffer.loadFile(fileInd, bufferInd);
bufferInd = newBufferInd;
fieldInd = newFieldInd;
}
// Store NetCDF variable in pinned memory on host
float *h_array;
if (newEndBufferInd != endBufferInd) {
// maybe dont do things?
}
cudaMallocHost(&h_array, sizeof(float)*length);
var.getVar(h_array);
// Copy data to device
cudaError_t status = cudaMalloc(&fd.valArrays[0], sizeof(float)*length);
if (status != cudaSuccess)
cout << "Error allocating memory: " << status << "\n";
cudaMemcpyAsync(fd.valArrays[0], h_array, sizeof(float)*length, cudaMemcpyHostToDevice);
cudaDeviceSynchronize(); // Heavy hammer synchronisation // TODO: Use streams
cudaFreeHost(h_array);
return fd;
return setupField(newEndBufferInd);
}
GPUBufferHandler::~GPUBufferHandler() {

View File

@ -8,7 +8,7 @@
class GPUBufferHandler {
public:
GPUBufferHandler();
GPUBufferHandler(GPUBuffer& gpuBuffer);
FieldData nextFieldData();
@ -16,8 +16,15 @@ public:
FieldMetadata *fmd;
static constexpr size_t numberOfTimeStepsPerField = 2; // TODO: Move this to fielddata
private:
GPUBuffer
FieldData setupField(size_t endBufferInd);
GPUBuffer& gpuBuffer;
size_t fileInd;
size_t bufferInd;
size_t fieldInd;
bool firstTimeStep = true;
};
#endif //GPUBUFFERHANDLER_H

View File

@ -1,14 +0,0 @@
#include <netcdf>
#include <cassert>
using namespace std;
using namespace netCDF;
template <typename T>
void readAndAllocateAxis(T** axis_ptr, size_t *size, NcVar var) {
assert(var.getDimCount() == 1);
netCDF::NcDim dim = var.getDim(0);
*size = dim.getSize();
cudaError_t status = cudaMallocManaged(axis_ptr, *size*sizeof(T));
var.getVar(*axis_ptr);
}

View File

@ -1,5 +1,5 @@
// #include "hurricanedata/fielddata.h"
// #include "hurricanedata/gpubufferhandler.h"
#include "hurricanedata/gpubufferhandler.h"
#include "hurricanedata/datareader.h"
#include "hurricanedata/gpubuffer.h"
@ -10,32 +10,9 @@
#include <memory>
#include <iomanip>
// Not parallel computation
// __global__ void computeMean(float *ans, const FieldMetadata &fmd, FieldData fd) {
// float sum = 0;
// size_t num_not_masked_values = 0;
// for (int i = 0; i < fmd.widthSize; i++) {
// double xi = getVal(fmd, fd, 2, 20, 100, i);
// if (xi < 1E14) { /* If x is not missing value */
// num_not_masked_values++;
// sum += xi;
// }
// }
// *ans = sum/num_not_masked_values;
// }
__global__ void computeMean(float *ans, DataHandle dh) {
float sum = 0;
size_t num_not_masked_values = 0;
for (int i = 0; i < dh.size; i++) {
double xi = dh.d_data[i];
if (xi < 1E14) { /* If x is not missing value */
num_not_masked_values++;
sum += xi;
}
}
*ans = sum/num_not_masked_values;
__global__ void getSingleValue(float *ans, const FieldMetadata &fmd, FieldData fd) {
float xi = getVal(fmd, fd, 1, 20, 100, 100);
*ans = xi;
}
int main() {
@ -52,29 +29,26 @@ int main() {
std::cout << "created buffer\n";
auto dataHandle = buffer.getDataHandle(0);
GPUBufferHandler bufferHandler(buffer);
std::cout << "got a data handle\n";
std::cout << "created buffer handler\n";
auto x = buffer.getAxis<int>(0, "time");
std::cout << "size of x=" << x.first << "\n";
std::cout << "x[1]= " <<x.second[1] << "\n";
auto fd = bufferHandler.nextFieldData();
std::cout << "aquired field\n";
// GPUBufferHandler buffer{path, variable};
float *ptr_test_read;
cudaMallocManaged(&ptr_test_read, sizeof(float));
// auto fd = buffer.nextFieldData();
float *ptr_mean;
cudaMallocManaged(&ptr_mean, sizeof(float));
computeMean<<<1, 1>>>(ptr_mean, dataHandle);
getSingleValue<<<1, 1>>>(ptr_test_read, *bufferHandler.fmd, fd);
cudaDeviceSynchronize();
std::cout << "Mean = " << std::fixed << std::setprecision(6) << *ptr_mean << "\n";
std::cout << "ptr_test_read = " << std::fixed << std::setprecision(6) << *ptr_test_read << "\n";
// cudaFree(fd.valArrays[0]);
cudaFree(ptr_mean);
// TODO: Write a example loop using buffering and measure it.
cudaFree(fd.valArrays[0]); // TODO: Free data properly in FieldData (maybe make an iterator)
cudaFree(ptr_test_read);
return 0;
}

View File

@ -46,5 +46,6 @@ print(Mean2)
print(f"Why does {np.mean(row):.10f} not equal {sumval/n:.10f} ?!")
# Close the NetCDF file
ncfile.close()

18
test_read2.py Normal file
View File

@ -0,0 +1,18 @@
import numpy as np
from netCDF4 import Dataset
# Load the NetCDF file
file_path = 'data/MERRA2_400.inst6_3d_ana_Np.20120101.nc4'
ncfile = Dataset(file_path, 'r')
# Check the available variables in the file
print(ncfile.variables.keys())
Temp = ncfile.variables['T'][:]
print(f"{Temp[1, 20, 100, 100]=}")
print(f"{Temp.flat[12949732]=}")
# Close the NetCDF file
ncfile.close()