Exported ray-caster into its own file

This commit is contained in:
Martin Opat 2024-12-30 10:47:51 +01:00
parent af7e899880
commit be918c5898
1 changed files with 127 additions and 0 deletions

View File

@ -0,0 +1,127 @@
#ifndef RAYCASTER_H
#define RAYCASTER_H
#include <cuda_runtime.h>
#include "linalg/linalg.h"
#include "consts.h"
#include "shading.h"
// Raycast + phong, TODO: Consider wrapping in a class
__global__ void raycastKernel(float* volumeData, unsigned char* framebuffer, int d_volumeWidth, int d_volumeHeight, int d_volumeDepth) {
int px = blockIdx.x * blockDim.x + threadIdx.x;
int py = blockIdx.y * blockDim.y + threadIdx.y;
if (px >= IMAGE_WIDTH || py >= IMAGE_HEIGHT) return;
float accumR = 0.0f;
float accumG = 0.0f;
float accumB = 0.0f;
// Multiple samples per pixel
for (int s = 0; s < SAMPLES_PER_PIXEL; s++) {
// Map to [-1, 1]
float u = ((px + 0.5f) / IMAGE_WIDTH ) * 2.0f - 1.0f;
float v = ((py + 0.5f) / IMAGE_HEIGHT) * 2.0f - 1.0f;
// TODO: Move this (and all similar transformation code) to its own separate file
float tanHalfFov = tanf(fov * 0.5f);
u *= tanHalfFov;
v *= tanHalfFov;
// Find ray direction
Vec3 cameraRight = (cameraDir.cross(cameraUp)).normalize();
cameraUp = (cameraRight.cross(cameraDir)).normalize();
Vec3 rayDir = (cameraDir + cameraRight*u + cameraUp*v).normalize();
// Intersect (for simplicity just a 3D box from 0 to 1 in all dimensions) - TODO: Think about whether this is the best way to do this
float tNear = 0.0f;
float tFar = 1e6f;
auto intersectAxis = [&](float start, float dirVal) {
if (fabsf(dirVal) < epsilon) {
if (start < 0.f || start > 1.f) {
tNear = 1e9f;
tFar = -1e9f;
}
} else {
float t0 = (0.0f - start) / dirVal;
float t1 = (1.0f - start) / dirVal;
if (t0>t1) {
float tmp=t0;
t0=t1;
t1=tmp;
}
if (t0>tNear) tNear = t0;
if (t1<tFar ) tFar = t1;
}
};
intersectAxis(cameraPos.x, rayDir.x);
intersectAxis(cameraPos.y, rayDir.y);
intersectAxis(cameraPos.z, rayDir.z);
if (tNear > tFar) continue; // No intersectionn
if (tNear < 0.0f) tNear = 0.0f;
float colorR = 0.0f, colorG = 0.0f, colorB = 0.0f;
float alphaAccum = 0.0f;
float tCurrent = tNear;
while (tCurrent < tFar && alphaAccum < alphaAcumLimit) {
Point3 pos = cameraPos + rayDir * tCurrent;
// Convert to volume indices
float fx = pos.x * (d_volumeWidth - 1);
float fy = pos.y * (d_volumeHeight - 1);
float fz = pos.z * (d_volumeDepth - 1);
int ix = (int)roundf(fx);
int iy = (int)roundf(fy);
int iz = (int)roundf(fz);
// Sample
float density = sampleVolumeNearest(volumeData, d_volumeWidth, d_volumeHeight, d_volumeDepth, ix, iy, iz);
// Basic transfer function. TODO: Move to a separate file, and then improve
float alphaSample = density * 0.1f;
// float alphaSample = 1.0f - expf(-density * 0.1f);
Color3 baseColor = Color3(density, 0.1f*density, 1.f - density); // TODO: Implement a proper transfer function
// If density ~ 0, skip shading
if (density > minAllowedDensity) {
Vec3 grad = computeGradient(volumeData, d_volumeWidth, d_volumeHeight, d_volumeDepth, ix, iy, iz);
Vec3 normal = -grad.normalize();
Vec3 lightDir = (lightPos - pos).normalize();
Vec3 viewDir = -rayDir.normalize();
// Apply Phong
Vec3 shadedColor = phongShading(normal, lightDir, viewDir, baseColor);
// Compose
colorR += (1.0f - alphaAccum) * shadedColor.x * alphaSample;
colorG += (1.0f - alphaAccum) * shadedColor.y * alphaSample;
colorB += (1.0f - alphaAccum) * shadedColor.z * alphaSample;
alphaAccum += (1.0f - alphaAccum) * alphaSample;
}
tCurrent += stepSize;
}
accumR += colorR;
accumG += colorG;
accumB += colorB;
}
// Average samples
accumR /= (float)SAMPLES_PER_PIXEL;
accumG /= (float)SAMPLES_PER_PIXEL;
accumB /= (float)SAMPLES_PER_PIXEL;
// Final colour
int fbIndex = (py * IMAGE_WIDTH + px) * 3;
framebuffer[fbIndex + 0] = (unsigned char)(fminf(accumR, 1.f) * 255);
framebuffer[fbIndex + 1] = (unsigned char)(fminf(accumG, 1.f) * 255);
framebuffer[fbIndex + 2] = (unsigned char)(fminf(accumB, 1.f) * 255);
}
#endif // RAYCASTER_H